If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x+x^2=175
We move all terms to the left:
30x+x^2-(175)=0
a = 1; b = 30; c = -175;
Δ = b2-4ac
Δ = 302-4·1·(-175)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-40}{2*1}=\frac{-70}{2} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+40}{2*1}=\frac{10}{2} =5 $
| 5(2y+3)=29 | | -91=-7x-5x+5 | | 13x-9+17=180 | | 13x-9+17+80=180 | | 3x+1+x-8+7+46=180 | | 2y+7+3y-4=180 | | -3x+10+5x=2 | | 3x+1+7=180 | | 27=4x-2x+3 | | -21=3x-7x+7 | | 5x+9+7x=105 | | x-9=16x+24 | | 5x+9+7x=10 | | 3+4x+6x=123 | | 9/y=0.5 | | 0.5=9/y | | -x+1+4x=1 | | 2/17=4/x | | 2/17=x/4 | | 11=-4x+x+2 | | 4.4-2y=2y+2.4 | | -2x-9-3x=-39 | | 3/19=x/57 | | x-1+x=11 | | 15n+28=18 | | 141=7x+5x+9 | | 1/7y-6=-16 | | 32=5x+4x+5 | | 0.2=18/k | | 0.2=19/k | | 0.36=9/e | | 1/(v-7)=7 |